5,443 research outputs found

    The Drosophila transcriptional network is structured by microbiota.

    Get PDF
    BACKGROUND: Resident microorganisms (microbiota) have far-reaching effects on the biology of their animal hosts, with major consequences for the host's health and fitness. A full understanding of microbiota-dependent gene regulation requires analysis of the overall architecture of the host transcriptome, by identifying suites of genes that are expressed synchronously. In this study, we investigated the impact of the microbiota on gene coexpression in Drosophila. RESULTS: Our transcriptomic analysis, of 17 lines representative of the global genetic diversity of Drosophila, yielded a total of 11 transcriptional modules of co-expressed genes. For seven of these modules, the strength of the transcriptional network (defined as gene-gene coexpression) differed significantly between flies bearing a defined gut microbiota (gnotobiotic flies) and flies reared under microbiologically sterile conditions (axenic flies). Furthermore, gene coexpression was uniformly stronger in these microbiota-dependent modules than in both the microbiota-independent modules in gnotobiotic flies and all modules in axenic flies, indicating that the presence of the microbiota directs gene regulation in a subset of the transcriptome. The genes constituting the microbiota-dependent transcriptional modules include regulators of growth, metabolism and neurophysiology, previously implicated in mediating phenotypic effects of microbiota on Drosophila phenotype. Together these results provide the first evidence that the microbiota enhances the coexpression of specific and functionally-related genes relative to the animal's intrinsic baseline level of coexpression. CONCLUSIONS: Our system-wide analysis demonstrates that the presence of microbiota enhances gene coexpression, thereby structuring the transcriptional network in the animal host. This finding has potentially major implications for understanding of the mechanisms by which microbiota affect host health and fitness, and the ways in which hosts and their resident microbiota coevolve

    Exact solutions for supersymmetric stationary black hole composites

    Full text link
    Four dimensional N=2 supergravity has regular, stationary, asymptotically flat BPS solutions with intrinsic angular momentum, describing bound states of separate extremal black holes with mutually nonlocal charges. Though the existence and some properties of these solutions were established some time ago, fully explicit analytic solutions were lacking thus far. In this note, we fill this gap. We show in general that explicit solutions can be constructed whenever an explicit formula is known in the theory at hand for the Bekenstein-Hawking entropy of a single black hole as a function of its charges, and illustrate this with some simple examples. We also give an example of moduli-dependent black hole entropy.Comment: 13 pages, 1 figur

    Acute exercise and appetite-regulating hormones in overweight and obese individuals: A meta-analysis

    Get PDF
    In lean individuals, acute aerobic exercise is reported to transiently suppress sensations of appetite, suppress blood-concentrations of acylated ghrelin (AG) and increase glucagon-like peptide-1 (GLP-1) and peptide-YY (PYY). Findings in overweight/obese individuals have yet to be synthesised. In this systematic review and meta-analysis, we quantified the effects acute exercise has on AG, total PYY and GLP-1 in overweight/obese individuals. The potential for body mass index (BMI) to act as a moderator for AG was also explored. Six published studies (73 participants, 78% male, mean BMI: 30.6 kg.m-2) met the inclusion criteria. Standardised mean differences (SMD) and standard errors were extracted for AG, total PYY and GLP-1 concentrations in control and exercise trials and synthesised using a random effects meta-analysis model. BMI was the predictor in a meta-regression for AG. Exercise moderately suppressed AG area-under-the-curve concentrations (pooled SMD -0.34, 95%CI: -0.53 to -0.15). The magnitude of this reduction was greater for higher mean BMIs (pooled meta-regression slope: -0.04 SMD/kg.m-2 (95%CI: -0.07 to 0.00)). Trivial SMDs were obtained for total PYY (0.10, 95%CI: -0.13 to 0.31) and GLP-1 (-0.03, 95%CI: -0.18 to 0.13). This indicates that exercise in overweight/obese individuals moderately alters AG in a direction that could be associated with decreased hunger and energy intake. (PROSPERO registration: CRD42014006265)

    Compactification on negatively curved manifolds

    Get PDF
    We show that string/M theory compactifications to maximally symmetric space-times using manifolds whose scalar curvature is everywhere negative, must have significant warping, large stringy corrections, or both.Comment: 18 pages, JHEP3.cl

    The elliptic genus from split flows and Donaldson-Thomas invariants

    Full text link
    We analyze a mixed ensemble of low charge D4-D2-D0 brane states on the quintic and show that these can be successfully enumerated using attractor flow tree techniques and Donaldson-Thomas invariants. In this low charge regime one needs to take into account worldsheet instanton corrections to the central charges, which is accomplished by making use of mirror symmetry. All the charges considered can be realized as fluxed D6-D2-D0 and anti-D6-D2-D0 pairs which we enumerate using DT invariants. Our procedure uses the low charge counterpart of the picture developed Denef and Moore. By establishing the existence of flow trees numerically and refining the index factorization scheme, we reproduce and improve some results obtained by Gaiotto, Strominger and Yin. Our results provide appealing evidence that the strong split flow tree conjecture holds and allows to compute exact results for an important sector of the theory. Our refined scheme for computing indices might shed some light on how to improve index computations for systems with larger charges.Comment: 37 pages, 12 figure

    Renormalization group approach to matrix models via noncommutative space

    Full text link
    We develop a new renormalization group approach to the large-N limit of matrix models. It has been proposed that a procedure, in which a matrix model of size (N-1) \times (N-1) is obtained by integrating out one row and column of an N \times N matrix model, can be regarded as a renormalization group and that its fixed point reveals critical behavior in the large-N limit. We instead utilize the fuzzy sphere structure based on which we construct a new map (renormalization group) from N \times N matrix model to that of rank N-1. Our renormalization group has great advantage of being a nice analog of the standard renormalization group in field theory. It is naturally endowed with the concept of high/low energy, and consequently it is in a sense local and admits derivative expansions in the space of matrices. In construction we also find that our renormalization in general generates multi-trace operators, and that nonplanar diagrams yield a nonlocal operation on a matrix, whose action is to transport the matrix to the antipode on the sphere. Furthermore the noncommutativity of the fuzzy sphere is renormalized in our formalism. We then analyze our renormalization group equation, and Gaussian and nontrivial fixed points are found. We further clarify how to read off scaling dimensions from our renormalization group equation. Finally the critical exponent of the model of two-dimensional gravity based on our formalism is examined.Comment: 1+42 pages, 4 figure
    • …
    corecore